2(x^2+1/x^2)-7(x+1/x)+9=0

Simple and best practice solution for 2(x^2+1/x^2)-7(x+1/x)+9=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x^2+1/x^2)-7(x+1/x)+9=0 equation:



2(x^2+1/x^2)-7(x+1/x)+9=0
Domain of the equation: x^2)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2(x^2+1/x^2)-7(+x+1/x)+9=0
We multiply parentheses
2x^2+2x-7x-7x+9=0
We add all the numbers together, and all the variables
2x^2-12x+9=0
a = 2; b = -12; c = +9;
Δ = b2-4ac
Δ = -122-4·2·9
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{2}}{2*2}=\frac{12-6\sqrt{2}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{2}}{2*2}=\frac{12+6\sqrt{2}}{4} $

See similar equations:

| 1/10=(1/2)^x/10 | | 10-b=40 | | 4m=-81-5m | | 5x^2+23x+78=0 | | |3x-4|=14 | | I3x-4I=14 | | 2+24y+40y^2=0 | | 4(2x+5)-16=44 | | 2=5+2r-r/5 | | 1/2x+1/3x=22 | | 14-54(x+6)=130-15(x-3) | | 6.2x-4.3=8.9x1.1 | | 6.2t-4.3=8.9t1.1 | | A(n)=-3+(n)-1)(-2.2) | | 4x-9=5x+12 | | |3x+|=11 | | x(2x4)=(2x+1)(x-2) | | 3(w-7)-5=-4(w+4)-5w | | 2(v-2)=4v+1-5(-2v-2) | | -4(w+5)=2w+22 | | 5y-9=2(y-3) | | -7(v+1)=-4v-22 | | 6(x+3)=56 | | H=21-m | | 3(x+4)+6=30 | | Y=12.7+.23x | | 30=5(n+3) | | F(x)=12.7+.23x | | 8n=6n–14 | | 14=2(x-4)+2 | | x-7=83 | | 34-18=2(x-4) |

Equations solver categories